
Algorithms for uniform centered partitions of trees

Isabella Lari a, Justo Puerto b, Federica Ricca a, Andrea Scozzari c

a Sapienza University of Rome, Italy
b IMUS, Instituto de Matemáticas de la Universidad de Sevilla, Spain

c University Niccolò Cusano, Rome, Italy

Abstract

In this paper we provide polynomial time algorithms for the problem of finding uniform centered
partitions of a tree, that is, partitions that are as balanced as possible either w.r.t. the costs or
to the weights of their components.

Keywords: Tree partitioning, centered partitions, flat costs, min-max criteria, uniform
partitions.

1 Introduction, notation and definitions

Let T = (V,E) be a tree with |V | = n. Assume that V is partitioned into two subsets S
and U such that S ⊂ V with |S| = p. S is the set of centers (facilities) and U = V \S
is the set of units (clients). We consider a cost function c : U × S → R

+ ∪ {0} which
associates a cost cis to each pair (i, s), i ∈ U , s ∈ S. We assume that these costs are flat,
i.e., they are independent of the topology of T . We also consider a nonnegative weight wi

associated to each i in U . A centered partition of T is a partition of the set V into p non
empty subsets, {C1, . . . , Cp}, such that each subset induces a subtree of T and contains
exactly one center. The cost of the component Cs centered in s is defined as the sum of
the costs cis of the units i ∈ Cs. The weight of the component Cs is given by the sum of
the weights of the units i ∈ Cs. We consider the flat costs and study the following two
problems: i) max-min cost centered partition problem, that is, find a centered partition of
T that maximizes the minimum cost of a component; ii) min-max cost centered partition
problem, that is, find a centered partition of T that minimizes the maximum cost of a
component.

Replacing the minimum and maximum cost by the minimum and maximum weight of a
component we obtain the following variants of the above problems: iii) max-min weight

Available online at www.sciencedirect.com

Electronic Notes in Discrete Mathematics 55 (2016) 37–40

1571-0653/© 2016 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/endm

http://dx.doi.org/10.1016/j.endm.2016.10.010

http://www.elsevier.com/locate/endm
http://dx.doi.org/10.1016/j.endm.2016.10.010
http://dx.doi.org/10.1016/j.endm.2016.10.010
http://www.sciencedirect.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.endm.2016.10.010&domain=pdf

centered partition problem; iv) min-max weight centered partition problem. For problems
i)-iv) we provide polynomial time algorithms: for i), iii) and iv) we adapt already existing
approaches, while for ii) we suggest a new procedure. This kind of problems are known as
uniform partition problems, and they have been widely studied in the literature on trees
[2,5]. In this paper we focus on the particular case of finding uniform centered partitions.
In previous papers we already studied problems of this class on general graphs, providing
several NP-completeness results for other types of graphs [1,3]. In particular, we proved
that all the above problems are NP-complete even on planar bipartite graphs with vertex
degree at most 3 and p = 2, and this motivates our interest for studying them now on
trees.

2 Max-min centered partition of trees

In this section we study the max-min (cost/weight) centered partition problem of a tree
T and we show how this problem can be solved in polynomial time by using results from
[2], where Becker and Perl provide a general technique for partitioning trees with different
objectives that is based on shifting operations and greedy decisions. Given the family F
of all the possible subsets of V , they define a weighting function H : F → R

+ ∪ {0} that
assigns a weight H(Z) to each subset Z in F . Among the others, they solve the problem
of finding a partition of T into p connected components, {Z1, . . . ,Zp}, that maximizes
the minimum of the H(Zj), j = 1, . . . , p, by applying a shifting algorithm originally
proposed in [5]. We refer to this problem as BP-max-min problem and observe that the
only difference with our problem is that [2] does not consider centered partitions. For
the BP-max-min problem the shifting algorithm applies when H(·) is a basic weighting
function, i.e., a function satisfying the following property: if Z1,Z2 ∈ F are such that
Z1 ⊆ Z2 then H(Z1) ≤ H(Z2).

Consider our problem of finding a max-min cost centered partition {C1, . . . , Cp} of T . Let
M =

∑
i∈U maxs∈S cis. For a generic subset C of V we introduce the following weighting

function:

H(C) =

⎧
⎪⎨

⎪⎩

M |C ∩ S|+ ∑

i∈C∩U
max
s∈C∩S

cis if C ∩ S 	= ∅
∑

i∈C
min
s∈S

cis if C ∩ S = ∅
(1)

It is easy to see that the above weighting function is basic. Notice that when {C1, . . . , Cp}
is a centered partition, for a component Cs centered in s one has:

H(Cs) = M +
∑

i∈Cs∩U
cis(2)

Theorem 2.1 A partition {C1, . . . , Cp} is an optimal solution of the max-min cost cen-
tered partition problem on a tree T if and only if it is an optimal solution of the BP-max-
min problem with weighting function H(·).
From Theorem 2.1 it follows that the max-min cost centered partition problem can be
solved by the shifting algorithm for the BP-max-min problem in O(p2r+ pn) time, where
r is the radius of T . We observe that the same basic weighting function (1) and the same

I. Lari et al. / Electronic Notes in Discrete Mathematics 55 (2016) 37–4038

shifting algorithm can be applied also to solve our max-min weight centered partition
problem by setting for each i ∈ U : cis = wi, ∀s ∈ S.

3 Min-max centered partition of trees

In [2] Becker and Perl also provide a shifting algorithm for the problem of finding a
partition of a tree into p connected components that minimizes the maximum weight of
a component (BP-min-max problem) that applies when the weighting function H(·) is
invariant (see [2] for the definition). Our min-max weight centered partition problem
on T can be solved in polynomial time by exploiting the shifting algorithm in [2]. Let
W =

∑
i∈U wi and assign the following weights:

wv =

⎧
⎨

⎩

wv if v ∈ U

W if v ∈ S
(3)

It can be shown that the resulting weighting function that assigns to a component C a
weight H(C) = ∑

v∈C
wv is invariant.

Theorem 3.1 A partition {C1, . . . , Cp} is an optimal solution of the min-max weight cen-
tered partition problem on a tree T if and only if it is an optimal solution of the BP-min-
max problem with weighting function H(·).
The most efficient implementation of the shifting algorithm for the BP-min-max problem
was provided by Perl and Vishkin in [6] and requires O(rp(p + logd) + n) time, where r
and d are the radius of T and the maximum degree of a vertex, respectively.

Finally, for the min-max cost centered partition problem we propose a new polynomial
time algorithm based on the solution of a sequence of feasibility problems in which, at
each iteration, a centered partition with maximum component cost bounded above by a
quantity δ (δ-centered partition) must be identified. Since T is a tree, a unit i cannot be
assigned to a center s such that the unique path from i to s contains another center s′ 	= s.
As a consequence, we can suppose that all leaves of T are centers. For a fixed value δ, if a
δ-centered partition of T exists, it can be found by visiting bottom-up T rooted at a leaf r
(denoted by Tr). Let Ti be the subtree of Tr rooted at i, Si the set of its centers, and p(i)
the parent of i in Tr, i 	= r. The idea of the algorithm is to add as much cost as possible
to the components in the bottom part of the tree without exceeding the given limit δ. If
a unit i can be assigned to a center in Ti, such center is selected in Si as the one that
minimizes the sum of the assigning costs; if not, i must be assigned to the same center as
its parent p(i) in S\Si. In this way, during the algorithm, for the current vertex i and for
each center s ∈ Si we are able to record the minimum cost of a component containing i
and s. A δ-centered partition of T exists if, at the end, all these costs are smaller than or
equal to δ. During the algorithm we compute the following quantities:

• c̄(i, s), i ∈ V and s ∈ S: the sum of the costs chs of the units h in Ti that must be
assigned to the same center as i in any δ-centered partition of T ;

• w∗(i, s), i ∈ V , s ∈ Si: the minimum cost of a component containing i and s in a

I. Lari et al. / Electronic Notes in Discrete Mathematics 55 (2016) 37–40 39

centered partition of Ti whose components, but at most the one containing s, have cost
at most δ. At the beginning we set w∗(i, s) = M > δ, i ∈ V , s ∈ Si.

We also introduce the binary indicator r(p(i), i), i ∈ U , which is set to 1 when i must be
necessarily assigned to the same center as its parent p(i) in any δ-centered partition of T .

For any given δ, after a suitable initialization of the above quantities, the algorithm
performs the following visit of Tr:

visit Tr bottom-up starting from its leaves
if the visited vertex is a unit i

for each j such that p(j) = i and r(i, j) = 0
for each s ∈ Sj such that w∗(j, s) ≤ δ set w∗(i, s) := w∗(j, s) + c̄(i, s)

if w∗(i, s) > δ for all s ∈ Si then
set r(p(i), i) := 1 and c̄(p(i), s) := c̄(p(i), s) + c̄(i, s) for all s ∈ S\Si

else if the visited vertex is a center s ∈ S
if c̄(s, s) > δ then STOP: the problem is infeasible

return r(p(i), i), ∀ i ∈ U

If a δ-centered partition exists, it can be found by a top-down visit of Tr using r(p(i), i).

Theorem 3.2 A δ-centered partition of T can be found in O(np) time.

By a binary search on all the possible values of δ one can find the min-max cost centered
partition in O(np log C̄) time, where C̄ is an upper bound on the cost of a component
(for example C̄ =

∑
i∈U maxs∈S cis). Let f(δ) be the maximum cost of a component in

a δ-centered partition of T . It is easy to see that f(δ) is an increasing stepwise linear
function of δ whose number of steps is bounded above by 2n. Using the approach in [4]
one can search over the different δ values in an overall time complexity of O(n2p).

References

[1] N. Apollonio, I. Lari, J. Puerto, F. Ricca, and B. Simeone, Polynomial algorithms for
partitioning a tree into single-center subtrees to minimize flat service costs, Networks 51
(2008) 78–89.

[2] R.I. Becker and Y. Perl, The shifting algorithm technique for the partitioning of trees, Disc.
Appl. Math. 62 (1995) 15–34.

[3] I. Lari, J. Puerto, F. Ricca and A. Scozzari, Partitioning a graph into connected components
with fixed centers and optimizing cost-based objective functions or equipartition criteria,
Networks 1 (2016) 69–81.

[4] M. Megiddo and A. Tamir, New results on the complexity of p-center problems, SIAM J.
Comput. 12 (1983) 751–758.

[5] Y. Perl and S. Schach, Max-min tree partitioning, J. of the ACM 28 (1981) 5–15.

[6] Y. Perl and U. Vishkin, Efficient implementation of a shifting algorithm, Disc. Appl. Math.
12 (1985) 71–80.

I. Lari et al. / Electronic Notes in Discrete Mathematics 55 (2016) 37–4040

