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Abstract

In this paper we provide polynomial time algorithms for the problem of finding uniform centered
partitions of a tree, that is, partitions that are as balanced as possible either w.r.t. the costs or
to the weights of their components.
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1 Introduction, notation and definitions

Let T = (V,E) be a tree with |V | = n. Assume that V is partitioned into two subsets S
and U such that S ⊂ V with |S| = p. S is the set of centers (facilities) and U = V \S
is the set of units (clients). We consider a cost function c : U × S → R

+ ∪ {0} which
associates a cost cis to each pair (i, s), i ∈ U , s ∈ S. We assume that these costs are flat,
i.e., they are independent of the topology of T . We also consider a nonnegative weight wi

associated to each i in U . A centered partition of T is a partition of the set V into p non
empty subsets, {C1, . . . , Cp}, such that each subset induces a subtree of T and contains
exactly one center. The cost of the component Cs centered in s is defined as the sum of
the costs cis of the units i ∈ Cs. The weight of the component Cs is given by the sum of
the weights of the units i ∈ Cs. We consider the flat costs and study the following two
problems: i) max-min cost centered partition problem, that is, find a centered partition of
T that maximizes the minimum cost of a component; ii) min-max cost centered partition
problem, that is, find a centered partition of T that minimizes the maximum cost of a
component.

Replacing the minimum and maximum cost by the minimum and maximum weight of a
component we obtain the following variants of the above problems: iii) max-min weight
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centered partition problem; iv) min-max weight centered partition problem. For problems
i)-iv) we provide polynomial time algorithms: for i), iii) and iv) we adapt already existing
approaches, while for ii) we suggest a new procedure. This kind of problems are known as
uniform partition problems, and they have been widely studied in the literature on trees
[2,5]. In this paper we focus on the particular case of finding uniform centered partitions.
In previous papers we already studied problems of this class on general graphs, providing
several NP-completeness results for other types of graphs [1,3]. In particular, we proved
that all the above problems are NP-complete even on planar bipartite graphs with vertex
degree at most 3 and p = 2, and this motivates our interest for studying them now on
trees.

2 Max-min centered partition of trees

In this section we study the max-min (cost/weight) centered partition problem of a tree
T and we show how this problem can be solved in polynomial time by using results from
[2], where Becker and Perl provide a general technique for partitioning trees with different
objectives that is based on shifting operations and greedy decisions. Given the family F
of all the possible subsets of V , they define a weighting function H : F → R

+ ∪ {0} that
assigns a weight H(Z) to each subset Z in F . Among the others, they solve the problem
of finding a partition of T into p connected components, {Z1, . . . ,Zp}, that maximizes
the minimum of the H(Zj), j = 1, . . . , p, by applying a shifting algorithm originally
proposed in [5]. We refer to this problem as BP-max-min problem and observe that the
only difference with our problem is that [2] does not consider centered partitions. For
the BP-max-min problem the shifting algorithm applies when H(·) is a basic weighting
function, i.e., a function satisfying the following property: if Z1,Z2 ∈ F are such that
Z1 ⊆ Z2 then H(Z1) ≤ H(Z2).

Consider our problem of finding a max-min cost centered partition {C1, . . . , Cp} of T . Let
M =

∑
i∈U maxs∈S cis. For a generic subset C of V we introduce the following weighting

function:

H(C) =

⎧
⎪⎨

⎪⎩

M |C ∩ S|+ ∑

i∈C∩U
max
s∈C∩S

cis if C ∩ S 	= ∅
∑

i∈C
min
s∈S

cis if C ∩ S = ∅
(1)

It is easy to see that the above weighting function is basic. Notice that when {C1, . . . , Cp}
is a centered partition, for a component Cs centered in s one has:

H(Cs) = M +
∑

i∈Cs∩U
cis(2)

Theorem 2.1 A partition {C1, . . . , Cp} is an optimal solution of the max-min cost cen-
tered partition problem on a tree T if and only if it is an optimal solution of the BP-max-
min problem with weighting function H(·).
From Theorem 2.1 it follows that the max-min cost centered partition problem can be
solved by the shifting algorithm for the BP-max-min problem in O(p2r+ pn) time, where
r is the radius of T . We observe that the same basic weighting function (1) and the same
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shifting algorithm can be applied also to solve our max-min weight centered partition
problem by setting for each i ∈ U : cis = wi, ∀s ∈ S.

3 Min-max centered partition of trees

In [2] Becker and Perl also provide a shifting algorithm for the problem of finding a
partition of a tree into p connected components that minimizes the maximum weight of
a component (BP-min-max problem) that applies when the weighting function H(·) is
invariant (see [2] for the definition). Our min-max weight centered partition problem
on T can be solved in polynomial time by exploiting the shifting algorithm in [2]. Let
W =

∑
i∈U wi and assign the following weights:

wv =

⎧
⎨

⎩

wv if v ∈ U

W if v ∈ S
(3)

It can be shown that the resulting weighting function that assigns to a component C a
weight H(C) = ∑

v∈C
wv is invariant.

Theorem 3.1 A partition {C1, . . . , Cp} is an optimal solution of the min-max weight cen-
tered partition problem on a tree T if and only if it is an optimal solution of the BP-min-
max problem with weighting function H(·).
The most efficient implementation of the shifting algorithm for the BP-min-max problem
was provided by Perl and Vishkin in [6] and requires O(rp(p + logd) + n) time, where r
and d are the radius of T and the maximum degree of a vertex, respectively.

Finally, for the min-max cost centered partition problem we propose a new polynomial
time algorithm based on the solution of a sequence of feasibility problems in which, at
each iteration, a centered partition with maximum component cost bounded above by a
quantity δ (δ-centered partition) must be identified. Since T is a tree, a unit i cannot be
assigned to a center s such that the unique path from i to s contains another center s′ 	= s.
As a consequence, we can suppose that all leaves of T are centers. For a fixed value δ, if a
δ-centered partition of T exists, it can be found by visiting bottom-up T rooted at a leaf r
(denoted by Tr). Let Ti be the subtree of Tr rooted at i, Si the set of its centers, and p(i)
the parent of i in Tr, i 	= r. The idea of the algorithm is to add as much cost as possible
to the components in the bottom part of the tree without exceeding the given limit δ. If
a unit i can be assigned to a center in Ti, such center is selected in Si as the one that
minimizes the sum of the assigning costs; if not, i must be assigned to the same center as
its parent p(i) in S\Si. In this way, during the algorithm, for the current vertex i and for
each center s ∈ Si we are able to record the minimum cost of a component containing i
and s. A δ-centered partition of T exists if, at the end, all these costs are smaller than or
equal to δ. During the algorithm we compute the following quantities:

• c̄(i, s), i ∈ V and s ∈ S: the sum of the costs chs of the units h in Ti that must be
assigned to the same center as i in any δ-centered partition of T ;

• w∗(i, s), i ∈ V , s ∈ Si: the minimum cost of a component containing i and s in a
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centered partition of Ti whose components, but at most the one containing s, have cost
at most δ. At the beginning we set w∗(i, s) = M > δ, i ∈ V , s ∈ Si.

We also introduce the binary indicator r(p(i), i), i ∈ U , which is set to 1 when i must be
necessarily assigned to the same center as its parent p(i) in any δ-centered partition of T .

For any given δ, after a suitable initialization of the above quantities, the algorithm
performs the following visit of Tr:

visit Tr bottom-up starting from its leaves
if the visited vertex is a unit i

for each j such that p(j) = i and r(i, j) = 0
for each s ∈ Sj such that w∗(j, s) ≤ δ set w∗(i, s) := w∗(j, s) + c̄(i, s)

if w∗(i, s) > δ for all s ∈ Si then
set r(p(i), i) := 1 and c̄(p(i), s) := c̄(p(i), s) + c̄(i, s) for all s ∈ S\Si

else if the visited vertex is a center s ∈ S
if c̄(s, s) > δ then STOP: the problem is infeasible

return r(p(i), i), ∀ i ∈ U

If a δ-centered partition exists, it can be found by a top-down visit of Tr using r(p(i), i).

Theorem 3.2 A δ-centered partition of T can be found in O(np) time.

By a binary search on all the possible values of δ one can find the min-max cost centered
partition in O(np log C̄) time, where C̄ is an upper bound on the cost of a component
(for example C̄ =

∑
i∈U maxs∈S cis). Let f(δ) be the maximum cost of a component in

a δ-centered partition of T . It is easy to see that f(δ) is an increasing stepwise linear
function of δ whose number of steps is bounded above by 2n. Using the approach in [4]
one can search over the different δ values in an overall time complexity of O(n2p).
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